

Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production

Kirsten Heimann

Growing demand for energy and food by the global population mandates finding water-efficient renewable resources.

Microalgae/cyanobacteria have shown demonstrated capacity to contribute to global energy and food security. Yet, despite proven process technology and established net energy-effectiveness and cost-effectiveness through co-product generation, microalgal biofuels are not a reality. This review outlines novel biofilm cultivation strategies that are water-smart, the opportunity for direct energy conversion via anaerobic digestion of N₂-fixing cyanobacterial biomass and integrative strategies for microalgal biodiesel and/or biocrude production via supercritical methanol-direct transesterification and hydrothermal liquefaction, respectively. Additionally, fermentation of cyanobacterial biofilms could supply bioethanol to feed wet transesterification to biodiesel conversion for on-site use in remote locations.

Address

Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD 4811, Australia

Corresponding author: Heimann, Kirsten (kirsten.heimann@jcu.edu.au)

Current Opinion in Biotechnology 2016, **38**:183–189

This review comes from a themed issue on **Energy biotechnology**

Edited by **Andrew S Ball** and **Jamie H D Cate**

For a complete overview see the [Issue](#) and the [Editorial](#)

Available online 5th March 2016

<http://dx.doi.org/10.1016/j.copbio.2016.02.024>

0958-1669/© 2016 Elsevier Ltd. All rights reserved.

A detailed life-cycle based review focussing on the production potential of biodiesel from microalgae, identified high capital investment requirements, operational costs and biomass loss due to contamination, rather than technological hurdles, as the main reasons [4^{••}]. While energy requirements for dewatering/harvesting are typically included, the large land and water requirements identified by Day *et al.* [5], particularly for open pond-based systems are, however, often not considered. High capital investment requirements can be combated by adopting a staged high value, low volume bio-product strategy with the aim to expand facilities, as capital is raised for actual biofuel production [6,7^{••}]. Reviews by Wijffels *et al.* [8^{••}], Savakis and Hellingwerf [6], and De Bhowmick *et al.* [9] provide detailed outlines of genetic engineering strategies for the enhancement of biofuel potential. Given the resistance to the use of genetically engineered organisms in many nations, particularly in outdoor (uncontrollable) locations, this will not be the focus of this review.

Another aspect receiving little attention, being rarely included even in recent life cycle analyses [10,11], are the fertilisation requirements of microalgae for optimal growth, because recycling of nutrient-rich waste waters from the downstream biomass to fuel processing pathways [7^{••}] or collocation with nutrient-rich water resources, such as water treatment plants (e.g. [12,13] and other references in this volume) is envisaged. Typical industry process diagrams rarely align production fertilisation — with areal requirements, leading to process diagrams that may be implementable at pilot-scale or for on-site supplies only, but fail to deliver at product market scales.

Given the above, this review will briefly touch on microalgal strain selection, that is, biomass biochemical profile requirements, in light of extraction/fuel production technology and their impacts on biomass dewatering requirements. It will also discuss alternative production pathways, incorporating alternatives for energy production and fertiliser recycling.

The bio-products trap — hindrance or facilitator for fuel production?

Microalgae and cyanobacteria have an undeniably high industrial potential for high value, low volume bio-product markets, as demonstrated by their contribution to the highly lucrative pigment and food supplement markets. The production potential for microalgal products has been reviewed in depth in recent years (e.g. [14–16]),

Introduction

As the world population increases to more than 9 billion people by 2050, food —, clean drinking water — and energy security, as well as climate instability are becoming pressing and interlinked problems with large socio-economic and environmental impacts [1,2]. Algae (micro and macroalgae and cyanobacteria (blue-green algae)) have been heralded as potential saviours, as they can be cultivated on non-arable land, in non-potable nutrient-rich water resources using waste CO₂ and light as key biomass production ingredients [3]. Yet to date, microalgal biofuels production has not transited into reality primarily due to economic competitiveness.

most highlighting the need for process integration of waste recycling for economic production of biofuels [17^{••}] and co-production of fine chemicals [18]. It is noteworthy though that, despite workable net energy and cost-effectiveness of this multiple co-product and by-product approach [17^{••}], microalgal biofuels are still not being produced at any scale. This could be indicative of a catch 22 situation where high value products could drive the economics and investment at the expense of progressing to low-value biofuel production until markets are saturated. One aspect mentioned for targeted high value bio-product markets, but receiving little attention, is the necessity for cultivation of specific strains, which have the obligatory biochemical profile — yields and — productivities to meet required productivities [19]. This has flow on effects on the economics of such production facilities, due to either more cost-prohibitive system requirements (e.g. closed systems) and/or impacts of contamination (e.g. open raceway ponds). This review investigates the possibility of a direct biofuels approach by integrating waste recycling, energy generation and waste product-derived co-products.

System considerations

To date, open raceway or hybrid system production of microalgal biomass appears to be the general consensus for economic biofuel generation [20], but, irrespective of system, the requirement for water movement to keep the biomass homogeneously resuspended for light exposure and dewatering/harvesting of relatively dilute biomass (often <1 g dry weight (DW) L $^{-1}$) can increase the cost of the operation, both in terms of capital and energy expenditures, for example, 0.21 kWh kg $_{\text{biomass}}^{-1}$ for raceway operation and 0.42 kWh kg $_{\text{biomass}}^{-1}$ for centrifuge-based dewatering/harvesting [21]. In an interesting life cycle analysis, Handler *et al.* [21] investigated energy requirements for different systems (stirred tank secondary treated sewage and raceway) integrated with different biofuel processing pathways, fast pyrolysis (RTPTM, Rapid Thermal Pyrolysis for the former) and oil extraction followed by hydro-processing for the latter cultivation approach and created a novel scenario where raceway cultivation of biomass was coupled with fast pyrolysis. Despite potential greenhouse gas emission savings of $\sim 85\%$ compared to petroleum petrol production, switching dewatering from settling to dissolved air-floatation (DAF) eroded the greenhouse gas emission savings basis by more than 50%.

A novel and recently more investigated cultivation strategy is biofilm cultivation of microalgae [22,23^{••}]. These systems have traditionally been used for remediation of waste waters, probably best known as algal turf scrubbers, but a serious link for the commercial production of microalgal biomass has been made only recently [22]. Microalgal biofilm cultivation avoids large energy

expenditure for mixing and dewatering/harvesting (Table 1), as the biomass scraped of a cultivation surface yields a paste with a similar total solid content to that obtained by centrifugation. Furthermore, as the algal biofilm is separated from the air by only a thin layer of water, irrespective of system design (Figure 1) [22], carbon dioxide and light utilisation is much improved [24]. Algal species choice in these systems is positively correlated to the hydrophobicity of the cell surface, providing superior attachment to the cultivation substratum [23^{••}]. Cultivation surface productivity of these systems typically range from 2 to 6 g DW m $^{-2}$ day $^{-1}$, while system footprint biomass can vary considerably based on design from 5–10 to 46–80 g DW m $^{-2}$ day $^{-1}$, with rotating and vertical systems showing the highest biomass productivities even in pilot-scale operation [23^{••}]. Based on algal turf scrubber species analyses for waste water treatment, freshwater green microalgal species grow readily has biofilms [23^{••}] and the successful cultivation of the nitrogen-fixing and self-settling cyanobacterium *Tolyphothrix* sp. was also recently shown for outdoor cultivation in the semi-arid tropics [25]. The biofilm cultivation approach when integrated with biomass to fuel/energy conversion scenarios can yield novel theoretical strategies for biofuel/bioenergy using microalgae/cyanobacteria.

Biofilm-integrated microalgal/cyanobacteria biofuel/bioenergy production

The various microalgal cultivation biofilm strategies are described in Box 1, where considerations of footprint, water loss and suitability for different applications are detailed.

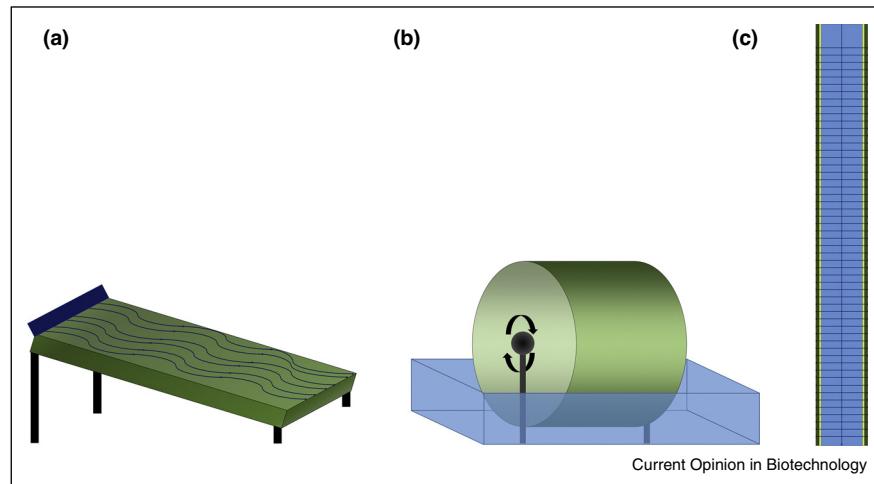
Many microalgae are capable to grow as biofilms in a perfused biofilm cultivation system, providing environmental conditions are sufficiently humid [22]. A scenario for self-sufficient perfusion biofilm-generated microalgal

Table 1

Comparison of energy and water requirements of open ponds (OP), vertical flat panel (VFP) and biofilm cultivation systems (BF) for biomass cultivation and dewatering/harvesting

Parameter	OP	VFP	BF
Biomass areal productivity [g m $^{-2}$ d $^{-1}$]	48 ^a	68 ^a	2–80 ^{b,c}
Energy for cultivation [kWh bbl $^{-1}$]	333 ^a	294 ^a	N/A
Water consumption [m 3 bbl $^{-1}$]	312 ^a	34 ^a	178 ^d 22 ^e
Energy for harvesting/dewatering			
Centrifugation [kWh bbl $^{-1}$]	1352 ^a	–	–
Chitosan flocculation [kWh bbl $^{-1}$]	–	135 ^a	–
Chamber press filtration [kWh bbl $^{-1}$]	1190 ^a	–	–

^a Ref. [48[•]].


^b Ref. [22].

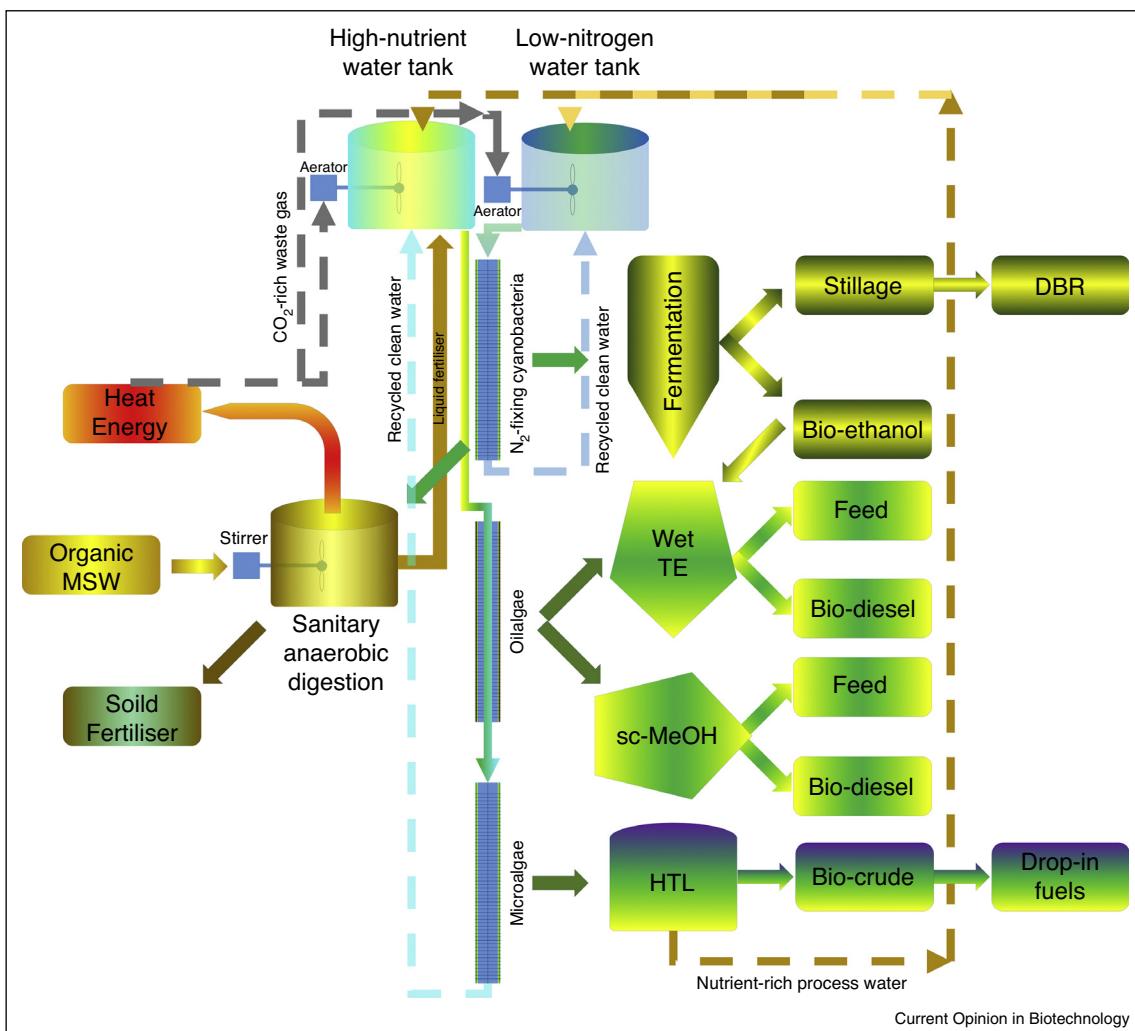
^c Ref. [23^{••}].

^d Based on [62] for a horizontal ATS.

^e Based on [32[•]] for a vertical water troph-positioned rotating biofilm reactor; bbl: barrel of oil (159 L).

Figure 1

Microalgal biofilm cultivation systems. (a) Algal turf scrubber, (b) rotating intermittently submerged drum system, which is ideally suited to remediate existing nutrient-rich water bodies (e.g. blue basin symbolises water treatment pond) and (c) perfused vertical algal biofilm design, where the yellow line symbolises the nutrient-permeable and water permeable but cell-impermeable cultivation substrate mounted on the nutrient-rich water conducting material (blue interior) and the green line, the algal surface biomass. The dark blue thin lines indicate the water flow into the biofilm and out through the water-conducting material.


biofuel production is shown in **Figure 2**, which assumes production in a humid high light agricultural location using anaerobic digestion (AD) as the energy source to drive production and biomass conversion processes. N₂-fixing cyanobacterial biomass are starch-rich and protein-rich and therefore ideal for fermentation to

bioethanol [34–38]. The use of N₂-fixing cyanobacteria has rarely been considered, although fertilisation requirements would be limited to the provision of phosphate and iron. Our studies show that the non-toxic, tropical N₂-fixing cyanobacterium *Tolypothrix* sp. can be grown successfully in outdoor biofilms [25] yielding comparable growth profiles when grown with or without inorganic nitrogen (Velu, Cirés and Heimann, unpublished). Among the naturally oil-rich microalgae are benthic diatoms that readily form thick biofilms and have been more the focus of antifouling research [39–41], while microalgae can be produced with increased oil content by switching from nutrient-sufficient to limiting conditions [42–46]. This biomass can be converted to biodiesel using either wet transesterification, potentially accelerated by pressure-assisted solvent extraction (not shown) [47], or super-critical methanol extraction and transesterification (sc-MeOH) (**Figure 2**). Using the process criteria for 10 000 MJ of algal biodiesel in a life cycle analysis by Brentner *et al.* [48*], biofilm cultivation would save 616 (paddle wheel, aeration and outflow pumping) and 2500 kWh on centrifugation, while using sc-MeOH would require 6080 MJ compared to 8180, 30 280 and 47 200 MJ using supercritical CO₂, drying, pressing and hexane-extraction, both followed by transesterification, or sonication-direct transesterification with acid hydrolysis, respectively. The same study shows energy-credit (2176 kWh 10GJ⁻¹ biodiesel) and nutrient credit (1176 kWh 10GJ⁻¹ biodiesel) generated by subjecting the extracted microalgal biomass to AD. Alternatively though, N₂-fixing cyanobacteria could be grown purposefully for AD energy generation (**Figure 2**), leaving the extracted biomass as a feed co-product. One of the very few microalgal biodiesel engine performance

Box 1 Microalgae biofilm cultivation systems

Microalgae biofilm cultivation systems can be defined by the submersion characteristics and the flow of nutrient-rich water (**Figure 1a–c**). Irrespective of design, supply of CO₂ is much more effective due to the thin nature of the water film allowing more effective diffusion compared to suspension-based cultivation approaches [26*]. In algal turf scrubbers (ATS) (**Figure 1a**), the biomass grows permanently submerged on an angled horizontal surface [22,23**]. These systems have been used successfully for the remediation of nutrient-rich waste waters in aquaculture, large aquaria and water treatment plants [27–31]. Due to the angled horizontal nature of ATS, the systems are ideal for implementation in more temperate regions, but system footprint and evaporative water loss is greater than in vertical designs [32*] (**Table 1**). Moreover, the microalgae to be cultured must be tolerant to high light. Biofilms in rotating systems (**Figure 1b**) on the other hand are only intermittently submerged, but have achieved highest biomass productivities [23**,32*] and are ideally implemented in places with nutrient-rich waste water ponds, such as water treatment plants [33*]. Consequently, evaporative water loss is dictated by the nature of the water surface area of such ponds. A relatively new design are perfused microalgal biofilm systems, where the algae are grown on a nutrient-permeable and water-permeable surface supplied via water-conducting material from behind (**Figure 1c**) [22]. System arrangements are typically vertical with small system footprints and spacing of the systems affords light dilution. Evaporative water loss will depend on environmental humidity; the system characteristics make them suitable for cultivation in high light and high humidity locations, such as the tropics [22,25].

Figure 2

Schematic of a self-sufficient perfused microalgal/cyanobacterial biofilm cultivation for biofuel production. The scenario assumes limited nutrient-rich or organic municipal waste availability in a rural, humid and high-light agricultural setting. N₂-fixing cyanobacteria are cultivated in low-nutrient, phosphate-sufficient and CO₂-supplemented water to provide biomass for anaerobic digestion (AD) and bioethanol production via fermentation. Stillage provides dried biomass residue (DBR) as a feed supplement, while the bioethanol could be used to assist wet transesterification (Wet TE) of the biomass of oil-rich algal (oilalgae) for the production of biodiesel and feed. Alternatively, oil-rich algae could yield biodiesel and feed via supercritical methanol (sc-MeOH) extraction and transesterification. Energy for required drying of input (Wet TE) and feed (fermenter DBR-derived, Wet TE-derived and sc-MeOH-derived) outputs and general energy requirements of the individual processes, including solvent recycling (not shown) would be supplied via AD. Nutrient-rich water return has only been considered for microalgal biomass conversion to biocrude via hydrothermal liquefaction (HTL) and the liquid leachate of the AD. The HTL-derived biocrude requires refining (deoxygenation and denitrification) for drop-in biofuel generation, which is assumed to take place at a sufficiently large external refinery. Finally, the residual solids from the AD would themselves be suitable as a fertiliser product.

studies showed that even the heterotrophically-produced dino flagellate *Cryptocodonium cohnii* with an extraordinarily high long chain polyunsaturated fatty acid (LC-PUFA) content, which would theoretically be detrimental due to adverse impacts on biodiesel quality [49], was suitable at current and future blending rates (B5 and B20), respectively [50]. It can therefore be expected that diatoms, naturally rich in the LC-PUFA, eicosapentaenoic acid (EPA), would yield similar biodiesel quality and engine performance results.

At present, the most frequently studied microalgal biofuel production route is hydrothermal liquefaction (HTL), as the water itself acts as a solvent at subcritical temperature settings, avoiding costly dewatering infrastructure and energy expenditure [51[•],52–59]. Although other thermochemical biofuel routes like torrefaction, slow and fast pyrolysis, and gasification are also being intently studied for algal fuel and energy potential, these are not discussed further here due to higher energy requirements [21,51[•],52–55]. Cultivation of microalgae/cyanobacteria

in perfusion biofilms will require dilution with low nutrient water prior to HTL to meet the maximum solid loading of no more than 10 wt.% [60]. A study by Biller *et al.* [61•] showed that HTL biocrude yields from green microalgae and the cyanobacterium *Spirulina* were comparable irrespective of large differences in lipid content. The same study also determined that HTL process water required significant dilution (200–400×) to sustain microalgal growth depending on species and HTL process conditions. Even though the perfused biofilm cultivation system offers switching of water supply to low nutrient water prior to harvest, this can have implications for the process outlined in Figure 2 with regards to matching HTL process water recycling with additional liquid fertiliser generated via AD. Should the outlined process, if energy requirements are to be met for biomass to biofuel processing, generate too much nutrient effluent, the opportunity does exist for liquid fertiliser co-product development using AD leachate and/or blending of HTL process water with nutrient-poor water.

Conclusions

Biofilm cultivation of microalgae and cyanobacteria offer novel water-smart biomass production pathways, which can readily feed into currently explored biofuel processing pathways. While some growth data exist, more detailed growth behaviour across seasons for the different systems, especially perfusion-based biofilm systems, are required to calculate area footprint and cultivation energy requirements with any certainty. Based on available biomass and biofuel process data, the time has come to translate theory into practice. This can be achieved at small scales initially aiming to meet the biofuel and feed demand in remote, rural locations generating required energy to drive cultivation, extraction and refining processes via anaerobic digestion of N₂-fixing cyanobacterial biomass. Ideally, locations should be chosen based on future expansion opportunity, which would also provide a strategy to create new agricultural industries.

Conflict of interest

Nothing declared.

Acknowledgements

This project was supported by the Advanced Manufacturing Cooperative Research Centre, funded through the Australian Government's Cooperative Research Scheme, grant numbers 2.3.2 and 2.3.4. The funders had no role in study design, data collection and analysis or preparation of the manuscript.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Bene C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, Williams M: **Feeding 9 billion by 2050 – putting fish back on the menu.** *Food Secur* 2015, **7**:261–274.
2. Finley JW, Seiber JN: **The nexus of food, energy, and water.** *J Agric Food Chem* 2014, **62**:6255–6262.
3. Heimann K, Huerlimann R: **The benefits and advantages of commercial algal biomass harvesting (Chapter 5).** In: *Biosafety and the Environmental Uses of Micro-Organisms*. Edited by OECD. OECD Publishing; 2015:73–92.
4. Han SF, Jin WB, Tu RJ, Wu WM: **Biofuel production from microalgae as feedstock: current status and potential.** *Crit Rev Biotechnol* 2015, **35**:255–268.
5. Day JG, Slocombe SP, Stanley MS: **Overcoming biological constraints to enable the exploitation of microalgae for biofuels.** *Bioresour Technol* 2012, **109**:245–251.
6. Savakis P, Hellingwerf KJ: **Engineering cyanobacteria for direct biofuel production from CO₂.** *Curr Opin Biotechnol* 2015, **33**:8–14.
7. Slade R, Bauen A: **Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects.** *Biomass Bioenerg* 2013, **53**:29–38.
8. Wijffels RH, Kruse O, Hellingwerf KJ: **Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.** *Curr Opin Biotechnol* 2013, **24**:405–413.
9. De Bhowmick G, Koduru L, Sen R: **Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application – a review.** *Renew Sust Energy Rev* 2015, **50**:1239–1253.
10. Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, Tester JW, Archibald I, Granados J, Greene CH: **Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment.** *Algal Res* 2015, **10**:266–279.
11. Klein-Marcuschamer D, Turner C, Allen M, Gray P, Dietzgen RG, Gresshoff PM, Hankamer B, Heimann K, Scott PT, Stephens E *et al.*: **Technoeconomic analysis of renewable aviation fuel from microalgae, *Pongamia pinnata*, and sugarcane.** *Biofuel Bioprod Biofpr* 2013, **7**:416–428.
12. Park JBK, Criggs RJ, Shilton AN: **Wastewater treatment high rate algal ponds for biofuel production.** *Bioresour Technol* 2011, **102**:35–42.
13. Pittman JK, Dean AP, Osundeko O: **The potential of sustainable algal biofuel production using wastewater resources.** *Bioresour Technol* 2011, **102**:17–25.
14. Dewapriya P, Kim SK: **Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods.** *Food Res Int* 2014, **56**:115–125.
15. Koller M, Muhr A, Brauneck G: **Microalgae as versatile cellular factories for valued products.** *Algal Res* 2014, **6**:52–63.
16. Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ: **Food commodities from microalgae.** *Curr Opin Biotechnol* 2013, **24**:169–177.
17. Zhu LD: **Biorefinery as a promising approach to promote microalgae industry: an innovative framework.** *Ren Sust Energy Rev* 2015, **41**:1376–1384.

This review article presents the net energy balances and cost-effectiveness assessments for four high value microalgae bioproduct and biofuel pathways. It concludes to highlight the necessary multi-disciplinary actions that must be taken for such approaches to be realised.

18. Wijffels RH, Barbosa MJ, Eppink MHM: **Microalgae for the production of bulk chemicals and biofuels.** *Biofuels Bioprod Biofpr* 2010, **4**:287–295.

19. Fresewinkel M, Rosello R, Wilhelm C, Kruse O, Hankamer B, Posten C: **Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes.** *Eng Life Sci* 2014, **14**:560-573.

20. Huntley ME, Johnson ZI, Brown SL, Sills DL, Gerber L, Archibald I, Machesky SC, Granados J, Beal C, Greene CH: **Demonstrated large-scale production of marine microalgae for fuels and feed.** *Algal Res* 2015, **10**:249-265.

21. Handler RM, Shonnard DR, Kalnes TN, Lupton FS: **Life cycle assessment of algal biofuels: influence of feedstock cultivation systems and conversion platforms.** *Algal Res* 2014, **4**:105-115.

22. Berner F, Heimann K, Sheehan M: **Microalgal biofilms for biomass production.** *J Appl Phycol* 2015, **27**:1793-1804.

23. Gross M, Jarboe D, Wen ZY: **Biofilm-based algal cultivation systems.** *Appl Microbiol Biotechnol* 2015, **99**:5781-5789.
A comprehensive review on biofilm forming microalgae and system performance. It differentiates between productivities per cultivation area and system footprint, which is a critical basis for scale up process evaluations and techno-economic analyses.

24. Schultze LKP, Simon MV, Li T, Langenbach D, Podola B, Melkonian M: **High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor.** *Algal Res* 2015, **8**:37-44.

25. Velu C, Cires S, Alvarez-Roa C, Heimann K: **First outdoor cultivation of the N₂-fixing cyanobacterium *Tolyphothrix* sp. in low-cost suspension and biofilm systems in tropical Australia.** *J Appl Phycol* 2015, **27**:1743-1753.

26. Merriman L, Moix A, Beitle R, Hestekin J: **Carbon dioxide gas delivery to thin-film aqueous systems via hollow fiber membranes.** *Chem Eng J* 2014, **253**:165-173.
This paper introduces a new and more efficient technology for sparging thin film bioreactors with CO₂ to enhance biomass production. It concludes in introducing a new mass transfer model to estimate system CO₂ levels.

27. Adey WH, Laughinghouse HD, Miller JB, Hayek LAC, Thompson JG, Bertman S, Hampel K, Puvanendran S: **Algal turf scrubber (ATS) flowways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry.** *J Phycol* 2013, **49**:489-501.

28. Mayr M, Jerney J, Schagerl M: **Combating planktonic algae with benthic algae.** *Ecol Eng* 2015, **74**:310-318.

29. Rothman NJ, Canuel EA, Beck AJ: **Trace metal cycling in an algal flowway system.** *Ecol Eng* 2013, **52**:290-297.

30. Sandefur HN, Johnston RZ, Matlock MD, Costello TA, Adey WH, Laughinghouse HD: **Hydrodynamic regime considerations for the cultivation of periphytic biofilms in two tertiary wastewater treatment systems.** *Ecol Eng* 2014, **71**:527-532.

31. Valeta J, Verdegem M: **Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system.** *Aquacult Res* 2015, **46**:945-951.

32. Gross M, Mascarenhas V, Wen ZY: **Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.** *Biotechnol Bioeng* 2015, **112**:2040-2050.
A very comprehensive study of productive biofilm cultivation at pilot scale. This study produces biomass production and water-use-efficiency data, which lay the foundation to critically evaluate the performance of suspension and other biofilm-based microalgae cultivation strategies.

33. Hassard F, Biddle J, Cartmell E, Jefferson B, Tyrrel S, Stephenson T: **Rotating biological contactors for wastewater treatment – a review.** *Process Saf Environ* 2015, **94**:285-306.
This review provides a comprehensive overview of rotating biofilm systems for the removal of nutrients and pollutants and biomass accumulation.

34. Aikawa S, Nishida A, Ho SH, Chang JS, Hasunuma T, Kondo A: **Glycogen production for biofuels by the euryhaline cyanobacteria *Synechococcus* sp strain PCC 7002 from an oceanic environment.** *Biotechnol Biofuels* 2014, **7**:88.

35. Karatay SE: **Usage of thermophilic cyanobacterial biomass for bioethanol production.** *Environ Prog Sustain Energy* 2015, **34**:903-907.

36. Aikawa S, Joseph A, Yamada R, Izumi Y, Yamagishi T, Matsuda F, Kawai H, Chang JS, Hasunuma T, Kondo A: **Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes.** *Energy Environ Sci* 2013, **6**:1844-1849.

37. Jones CS, Mayfield SP: **Algae biofuels: versatility for the future of bioenergy.** *Curr Opin Biotechnol* 2012, **23**:346-351.

38. Möllers KB, Cannella D, Jorgensen H, Frigaard NU: **Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation.** *Biotechnol Biofuels* 2014, **7**:64-74.

39. Landoulsi J, Cooksey KE, Dupres V: **Review – interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.** *Biofouling* 2011, **27**:1105-1124.

40. Miesznik S, Callow ME, Callow JA: **Interactions between microbial biofilms and marine fouling algae: a mini review.** *Biofouling* 2013, **29**:1097-1113.

41. Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF: **Marine biofilms on artificial surfaces: structure and dynamics.** *Environ Microbiol* 2013, **15**:2879-2893.

42. Bona F, Capuzzo A, Franchino M, Maffei ME: **Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in *Neochloris oleoabundans*.** *Algal Res* 2014, **5**:1-6.

43. von Alvensleben N, Stookey K, Magnusson M, Heimann K: **Salinity tolerance of *Picochlorum atomus* and the use of salinity for contamination control by the freshwater cyanobacterium *Pseudanabaena limnetica*.** *PLoS One* 2013;8.

44. Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan YF, Li HY: **Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation.** *Biotechnol Biofuels* 2013;6.

45. Zheng YB, Li TT, Yu XC, Bates PD, Dong T, Chen SL: **High-density fed-batch culture of a thermotolerant microalga *Chlorella sorokiniana* for biofuel production.** *Appl Energy* 2013, **108**:281-287.

46. Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R: **Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation.** *Appl Microbiol Biotechnol* 2014, **98**:4805-4816.

47. Islam MA, Brown RJ, O'Hara I, Kent M, Heimann K: **Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae.** *Energ Convers Manage* 2014, **88**:307-316.

48. Brentner LB, Eckelman MJ, Zimmerman JB: **Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.** *Environ Sci Technol* 2011, **45**:7060-7067.
A comprehensive life cycle assessment for algal biodiesel production comparing open pond and flat panel bioreactor production, integrating anaerobic digestion into energy balances through the digestion of extracted biomass.

49. Islam MA, Brown RJ, Brooks PR, Jahirul MI, Bockhorn H, Heimann K: **Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis.** *Energ Convers Manage* 2015, **98**:340-347.

50. Islam MA, Rahman MM, Heimann K, Nabi MN, Ristovski ZD, Dowell A, Thomas G, Feng B, von Alvensleben N, Brown RJ: **Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine.** *Fuel* 2015, **143**:351-360.
This research represents one of the very few actual engine performance tests using different blends of microalgae:petroleum and higher plant-derived biodiesel:petroleum blends.

51. Chen WH, Lin BJ, Huang MY, Chang JS: **Thermochemical conversion of microalgal biomass into biofuels: a review.** *Bioresour Technol* 2015, **184**:314-327.

A comprehensive review of various thermochemical processing for microalgal biofuel generation, detailing conversion processes and their outcomes.

52. Chen Y, Wu YL, Hua DR, Li C, Harold MP, Wang JL, Yang MD: **Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities.** *RSC Adv* 2015, **5**:18673-18701.

This paper specifically compares the outcomes of pyrolysis and hydrothermal liquefaction of low-lipid microalgal feedstock.

53. Raheem A, Azlina W, Yap YHT, Danquah MK, Harun R: **Thermochemical conversion of microalgal biomass for biofuel production.** *Ren Sust Energy Rev* 2015, **49**:990-999.

54. Du ZY, Hu B, Shi AM, Ma XC, Cheng YL, Chen P, Liu YH, Lin XY, Ruan R: **Cultivation of a microalga *Chlorella vulgaris* using recycled aqueous phase nutrients from hydrothermal carbonization process.** *Biore sour Technol* 2012, **126**:354-357.

55. Duan PG, Wang B, Xu YP: **Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.** *Biore sour Technol* 2015, **186**:58-66.

56. Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S: **Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga *Tetraselmis* sp.** *Biore sour Technol* 2014, **170**:20-29.

The study investigates the effects of various temperature and reaction time combination on biocrude yields and quality. It highlights that settings for maximal yields are different to those for optimal quality.

57. Jazrawi C, Biller P, He YY, Montoya A, Ross AB, Maschmeyer T, Haynes BS: **Two-stage hydrothermal liquefaction of a high-protein microalga.** *Algal Res* 2015, **8**:15-22.

58. Pragya N, Pandey KK, Sahoo PK: **A review on harvesting, oil extraction and biofuels production technologies from microalgae.** *Ren Sust Energy Rev* 2013, **24**:159-171.

59. López Barreiro D, Prins W, Ronsse F, Brilman W: **Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects.** *Biomass Bioenerg* 2013, **53**:113-127.

60. Jazrawi C, Biller P, Ross AB, Montoya A, Maschmeyer T, Haynes BS: **Pilot plant testing of continuous hydrothermal liquefaction of microalgae.** *Algal Res* 2013, **2**:268-277.

61. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA: **Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process.** *Algal Res* 2012, **1**:70-76.

A detailed study on hydrothermal liquefaction process water nutrient loads and impacts on the growth of freshwater green algae and the cyanobacterium *Spirulina*. It demonstrates that HTL nutrient loads can adversely impact microalgal growth.

62. Ozkan A, Kinney K, Katz L, Berberoglu H, Asme: **Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.** *Biore sour Technol* 2012, **114**:542-548.