

Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations

Damian E Helbling

The use of pesticides in agricultural and urban environments has improved quality of life around the world. However, the resulting accumulation of pesticide residues in fresh water resources has negative effects on aquatic ecosystem and human health. Bioremediation has been proposed as an environmentally sound alternative for the remediation of pesticide-contaminated water resources, though full-scale implementation has thus far been limited. One major challenge that has impeded progress is the occurrence of pesticides at low concentrations. Recent research has improved our fundamental understanding of pesticide biodegradation processes occurring at low concentrations under a variety of environmental scenarios and is expected to contribute to the development of applied bioremediation strategies for pesticide-contaminated water resources.

Address

School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA

Corresponding author: Helbling, Damian E
(damian.helbling@cornell.edu)

Current Opinion in Biotechnology 2015, 33:142–148

This review comes from a themed issue on **Environmental biotechnology**

Edited by **Spiros N Agathos** and **Nico Boon**

<http://dx.doi.org/10.1016/j.copbio.2015.02.012>

0958-1669/© 2015 Elsevier Ltd. All rights reserved.

Introduction

Approximately 2.4 million metric tons of pesticide active ingredients are applied annually worldwide to control the occurrence of weeds, insects, fungi, and other unwanted organisms in agricultural and urban environments [1]. Decades of monitoring studies have documented the occurrence of pesticide residues at trace concentrations (on the order of $\mu\text{g/L}$ and lower) in water resources around the world (e.g. [2*]). One potential pathway of human exposure to pesticides is through drinking water. Even at trace concentrations, pesticides may exceed regulated drinking water concentration thresholds [3] and remediation may be required to protect public health (see **Box 1** for summary of key legislation and guidelines for pesticide occurrence in drinking water). Traditional

drinking water treatment processes do not effectively remove pesticides from water [3]. Advanced water treatment processes such as activated carbon target pesticides for removal, but are expensive to operate and are not suitable or feasible for all situations [3]. Therefore, alternative strategies are needed to effectively remove pesticides from drinking water resources and limit human exposure.

Engineered bioremediation processes have a long history of application for environmental restoration, however there are unique challenges to consider when designing bioremediation strategies for pesticide-contaminated water resources. Traditional bioremediation processes typically target specific chemical contaminants that are confined in the subsurface at high concentrations. In contrast, bioremediation of pesticide-contaminated water resources must target soluble pesticide residues that are transported in the aqueous phase at low concentrations. Further, pesticides occur in water resources along with other carbon substrates that are present at similar or greater concentrations; pesticide degraders must compete with indigenous microbial communities for these carbon substrates while maintaining biodegradation activity towards pesticides. In this review, the recent literature on pesticide biodegradation and bioremediation is explored while focusing on these unique challenges. First, the kinetic and physiological factors that determine the extent of pesticide biodegradation under a variety of environmental scenarios are considered. Then, the general strategies that have been proposed for the bioremediation of pesticide-contaminated water resources are introduced. Finally, the main challenges limiting the application of specific techniques are discussed.

Factors that determine the extent of pesticide biodegradation

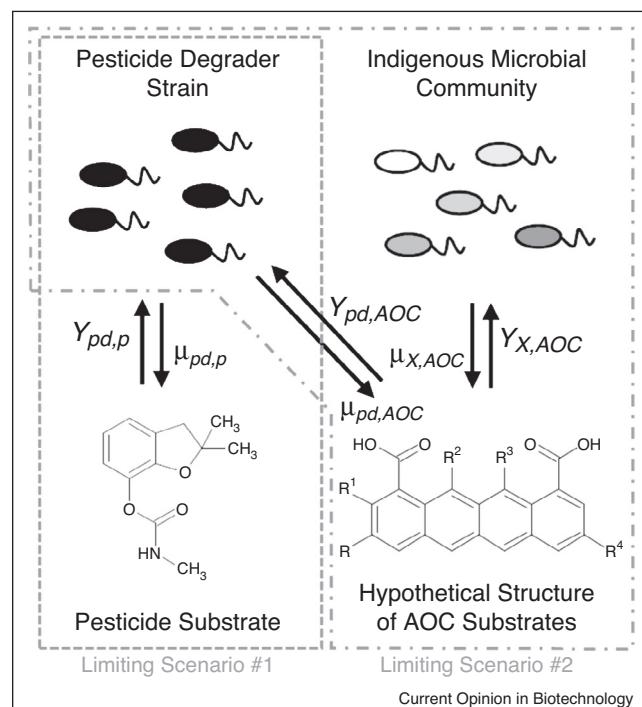
Biodegradation is regarded as the most important means for natural attenuation of pesticides in the environment [9]. However, pesticide biodegradation will only occur under favorable environmental conditions [10]. One critical factor that determines the extent of pesticide biodegradation is the interaction between the pesticide degrader and the indigenous microbial community along with the consequent competition for other assimilable organic carbon (AOC) substrates. These interactions are presented schematically in **Figure 1**. There are two limiting scenarios that can reduce the complexity of these interactions. The first scenario is delineated on the left side of **Figure 1** and is characterized by relatively high growth

Box 1 Summary of key legislation and guidelines for pesticide occurrence in drinking water
World Health Organization (WHO) Guidelines for Drinking Water Quality [4]

- Establishes guideline values (GVs) for 32 individual pesticides that are of health significance in drinking water.
- GVs range between 0.03 and 200 µg/L.

European Union (EU) Groundwater Directive [5]

- Stipulates maximum allowable concentration of all individual pesticides in drinking water is 0.1 µg/L.
- Stipulates that the sum of all pesticide concentrations is less than 0.5 µg/L.
- Stipulates maximum allowable concentration of aldrin, dieldrin, heptachlor, and heptachlor epoxide is 0.03 µg/L.


Australian Drinking Water Guidelines 6 [6]

- Establishes guideline values (GVs) for 153 individual pesticides.
- GVs range between 0.0003 and 9 µg/L.

United States Environmental Protection Agency (USEPA) Safe Drinking Water Act

- Stipulates maximum contaminant levels (MCLs) for 21 individual pesticides [7].
- Stipulates MCLs for the 21 pesticides in the range of 0.2–700 µg/L.
- Identifies 43 additional pesticides and pesticide degradation products on a contaminant candidate list (CCL) that may require an MCL in future regulations [8].

rates of the pesticide degrader on the pesticide substrate. This can occur when pesticide concentrations are high or when enzyme affinities for the target pesticide are greater than enzyme affinities for other AOC substrates. For example, agricultural soils are generally characterized by high concentrations of pesticides following application; under these conditions, significant biodegradation and mineralization of pesticides has been reported (e.g. [11]). Bacterial enzymes may also evolve in response to prolonged exposure to high concentrations of specific pesticides which can lead to the construction of novel metabolic pathways [12] or enhanced metabolic activity [13]. In this limiting scenario, interactions with the indigenous microbial community or other AOC substrates are not expected to have a significant effect on pesticide biodegradation. The second scenario is delineated on the right side of Figure 1 and is characterized by relatively high growth rates of either the pesticide degrader or the indigenous microbial community on other AOC substrates. This can occur when the concentration of AOC substrates is high or enzyme affinities for the target pesticide are relatively low. For example, wastewater treatment plant influents are generally characterized by high concentrations of other AOC substrates and low concentrations of pesticides [14]. Under these limiting

Figure 1

Schematic of interactions between pesticide degraders and indigenous microbial communities along with the consequent competition for other assimilable organic carbon (AOC) substrates. Key parameters that determine the extent of pesticide biodegradation are the growth rate and yield of the pesticide degrader on the pesticide ($\mu_{pd,p}$, $Y_{pd,p}$), the growth rate and yield of the pesticide degrader on other AOC substrates ($\mu_{pd,AOC}$, $Y_{pd,AOC}$), and the growth rate and yield of the indigenous microbial community on other AOC substrates ($\mu_{X,AOC}$, $Y_{X,AOC}$). The limiting scenarios described in the text are delineated by the dashed lines. Schematic is adapted from Liu et al. [18*].

conditions, the environment selects for microorganisms that grow on the abundant AOC substrates and pesticides are typically recalcitrant [14]. Pesticide removal reported in these types of environments is generally attributed to fortuitous metabolism [9] evidenced by the formation of pesticide degradation products [15].

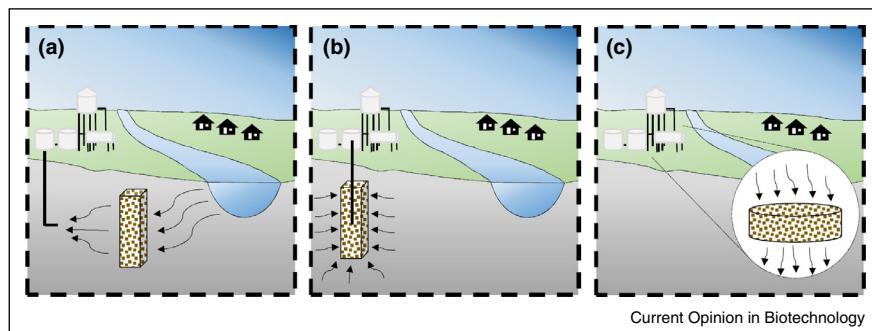
Pesticide-contaminated water resources are not generally characterized by one of these limiting scenarios and therefore the complement of interactions presented in Figure 1 are important for determining the extent of pesticide biodegradation. The co-occurrence of indigenous microbial communities and other AOC substrates can have either positive or negative effects on the extent of pesticide biodegradation [16,17]. A recent model developed and validated using literature reported biodegradation data demonstrated that the effects of interactions with indigenous microbial communities or other AOC substrates can largely be predicted by considering the kinetics of those interactions [18*]. The key parameters

needed to make predictions on the extent of pesticide biodegradation are the growth rates and yields of the pesticide degraders and the indigenous microbial community on the pesticide and other AOC substrates [18*]. These parameters are difficult to measure in biodegradation experiments conducted at environmentally relevant concentrations. However, two methods based on high accuracy cell counting and experimental procedures that minimize interferences from external carbon were recently developed [19,20**]. Application of these methods has led to robust estimates of growth rates and yields of pesticide degraders in experiments conducted at low concentrations [20**]. Importantly, growth rates measured at relatively high pesticide concentrations could predict growth rates measured at low concentrations [20**]. These new methods can be applied to estimate kinetic parameters for growth on a variety of pesticide and AOC substrates. Fully parameterized models can be used to simulate pesticide biodegradation under a wide range of environmental scenarios and to optimize bioremediation processes [18*].

A variety of physiological processes are also important for pesticide biodegradation at low concentrations. For example, some pesticide degraders can mineralize target pesticides at environmentally relevant concentrations by means of a constitutively expressed catabolic pathway [21]. In contrast, other pesticide degraders have one or more catabolic genes in the pathway that require induction at higher concentrations [22] which can lead to recalcitrance or the accumulation of biodegradation intermediates. Catabolic gene induction may also play a role in the phenomenon of threshold concentrations which are often reported in the range of 1–100 µg/L [17], though the specific causes of threshold concentrations remain poorly understood. Carbon catabolite repression may also be an important physiological process affecting pesticide biodegradation in environments with varying types and amounts of other AOC substrates. In low concentration environments, mixed substrate utilization has been widely reported (e.g. [17]). However, recent data showed that the specific activity of a pesticide degrader was suppressed in the presence of easily degradable AOC substrates at low concentrations [23*]. Other experiments likewise showed that the extent of biodegradation of a variety of trace organic contaminants (including pesticides) was suppressed as the quantity of easily degradable AOC substrate supplements was increased [24,25]. These data suggest that carbon catabolite repression may be relevant under certain environmental scenarios and an important consideration in developing bioremediation strategies.

Bioremediation of pesticide-contaminated water resources

Most bioremediation strategies considered for pesticide-contaminated water resources involve biofiltration. There are two main reasons for this. First, pesticides in water resources are generally mobile. Biofiltration enables the


design of a confined bioremediation compartment through which pesticide-contaminated water can flow. Second, the hydrodynamics of some types of biofiltration systems can be controlled in such a way that enables high loading rates of pesticides and other carbon substrates even when they are present at low concentrations. High loading rates can have positive effects on biodegradation by generating high fluxes of substrates that consequently enhance metabolic activity, though high loading rates can also limit hydraulic residence times which could have negative effects on bioremediation. Some general bioremediation schemes for pesticide-contaminated water resources related to drinking water production are provided in Figure 2. Natural attenuation of pesticides in experimental biofiltration systems has been reported (e.g. [26]), but biodegradation is most often incomplete resulting in either residual concentrations of pesticides or pesticide degradation products in effluents. Therefore, the aim of bioremediation is to optimize the rate and extent of biodegradation by employing techniques such as bioaugmentation and biostimulation.

Bioaugmentation in pesticide-contaminated water resources

Bioaugmentation involves application of non-native degraders to a contaminated environment or engineered process to enhance the biodegradation of target chemical contaminants. Bioaugmentation has been explored at laboratory-scale and pilot-scale to remove taste and odor compounds [27] and triazine pesticides [28,29] during drinking water production. More recently, bioaugmentation has been successfully demonstrated for the remediation of soils containing a variety of pesticides including endosulfan, 4-chloro-2-methylphenoxyacetic acid (MCPA), and linuron [30–32]. There are two main challenges in developing bioaugmentation strategies for the targeted removal of pesticides in water resources. First, suitable pesticide degraders must be isolated with the requisite metabolic capabilities and physiology to utilize the target pesticides at low concentrations and under a range of environmental scenarios. Second, the pesticide degrader must remain in the bioremediation compartment and maintain activity towards the target pesticide over extended time scales.

Pesticide degraders are generally isolated from environmental samples following selective enrichment on relatively high concentrations of the target pesticide [33–35]. However, it was recently demonstrated that the physiology of the resulting degraders can be dependent on the conditions at which they were enriched [36**]. Specifically, microbial communities that could utilize MCPA were enriched from groundwater on low and high concentrations of MCPA [36**]. The results showed that both communities had biodegradation activity towards MCPA, but the community isolated at low MCPA concentrations had greater activity towards low concentrations of MCPA as evidenced by shorter lag phases [36**]. Thus, a subpopulation of

Figure 2

General bioremediation schemes for pesticide-contaminated water resources at various locations within a water system. **(a)** Biofiltration is used as part of managed bank filtration. A bioremediation zone is designed and optimized for remediation of pesticide-contaminated water prior to reaching the intake at the drinking water treatment plant. **(b)** Biofiltration is applied directly at the intake to the drinking water treatment plant. Here, pesticide-contaminated groundwater is treated prior to the traditional treatment train. **(c)** Biofiltration is applied in conjunction with traditional filtration objectives within the drinking water treatment plant. In each example, bioaugmentation or biostimulation could be used to enhance biodegradation of pesticides.

MCPA degraders was isolated that might be better suited for bioaugmentation in water resources contaminated with low concentrations of MCPA. Fungi are also recognized as important pesticide degraders. Fungal degraders have recently been isolated that can biodegrade organophosphate pesticides [37,38] and pesticides containing aromatic amine functional groups [39]. Mixed bacterial and fungal communities have also shown cooperative improvements to pesticide biodegradation. For example, diuron and 2,6-dichlorobenzamide (BAM) were mineralized more rapidly in sand when bacterial and fungal degraders were simultaneously present than when the bacterial degraders were present alone [40,41]. These observations were attributed to cooperative metabolism or enhanced transport of bacterial degraders by fungal hyphae [41].

In lieu of selective enrichment for identifying novel pesticide degraders, others have considered investigating the metabolic capabilities of organisms that are known to metabolize anthropogenic chemicals that have analogous chemical structures to pesticides. For example, a pair of bacteria that use lactonases to oxidize a variety of oil constituents were recently shown to metabolize organophosphate pesticides using the same enzymes [42]. Further, laboratory techniques were used to enhance the catalytic activity of lactonases towards organophosphate pesticides through induced mutations [43*]. The isolated mutants lost their activity towards lactones, but showed increased affinity towards a number of organophosphate pesticides [43*]. In a separate example, a bacterium that metabolizes polycyclic aromatic hydrocarbons was used to metabolize the carbaryl group of N-methylcarbamate pesticides [44]. Another emerging approach is to expand the metabolic capacity of pesticide degraders. For example, a genetically engineered microorganism capable of simultaneously degrading organophosphate and organochlorine

pesticides was constructed by display of organophosphate hydrolase on the cell surface of a hexachlorocyclohexane (HCH)-degrading bacterium [45]. The modified organism showed simultaneous activity towards organophosphate and organochlorine pesticides. In sum, these techniques are expected to contribute to identifying pesticide degraders for bioaugmentation, though it remains critical to investigate degrader physiology at low concentrations and in the presence of indigenous microbial communities and other AOC substrates when targeting water resources contaminated with low concentrations of pesticides.

Approaches to ensure successful invasion of a pesticide degrader into an indigenous microbial community are limited. Recent work aimed at understanding the potential for pathogen proliferation in drinking water systems revealed that pathogens were outcompeted by native microbial communities adapted to life in drinking water [46,47]. These results reinforce the recommendation to isolate pesticide degraders from environments and under conditions that are similar to those in which the bioaugmentation will occur [36**]. Other studies have looked at ecological factors that control bacterial invasion of microbial communities. For example, it was demonstrated that microbial communities with a high level of evenness are more resistant to invasion due to greater niche overlap among the native taxa [48]. Therefore, an understanding of the community composition into which bioaugmentation is planned is also expected to be an essential prerequisite for understanding potential success. If a successful invasion is unlikely or unexpected, an alternative approach could be to encapsulate or immobilize pesticide degraders onto surfaces. This can protect cells from predators, prevent washout, and consequently extend the lifetime of biodegradation activity. For example, the biodegradation capacity of a lindane degrader persisted longer in liquid and slurry microcosms when encapsulated

in open-ended tubes which resulted in a slow release of active lindane degraders [49]. The duration of biodegradation activity was also extended following encapsulation of degraders in polyvinyl alcohol cryogel beads [50], calcium alginate beads [51], and other natural materials [52]. These immobilization techniques are expected to significantly enhance the vitality and lifespan of a bioaugmentation system.

Biostimulation in pesticide-contaminated water resources

Biostimulation is a bioremediation technique that involves enhancement of microbial community activity following manipulation of the physicochemical environment. This is most often accomplished by adding various forms of potentially rate limiting substrates or nutrients to the environment. For example, bentazone, mecoprop, and dichlorprop biodegradation was stimulated in anaerobic aquifer material following the addition of oxygen [53]. A new approach to biostimulation could be to manipulate a microbial community to enhance biodegradation activity towards a broader range of pesticides. There are at least two ways that this could be achieved. First, certain measures of biodiversity including taxonomic richness have been shown to associate positively and significantly with the collective biotransformation rates of multiple trace organic pollutants in microbial communities [54]. Taxonomic richness was enhanced in laboratory-scale experiments by providing niche opportunities for microorganisms in the form of physical and chemical heterogeneities [55]. Manipulating the taxonomic richness of microbial communities in engineered bioremediation processes by providing niche opportunities may result in greater biodegradation activity towards a broader range of pesticides. Second, microorganisms generally express larger numbers of catabolic genes under oligotrophic conditions [56]. This physiological mechanism allows bacteria to take advantage of a broad range of scarce substrates in oligotrophic environments. Constructing biofiltration systems that treat contaminated water in a series of compartments could lead to increasingly oligotrophic bioremediation zones and microbial communities with greater metabolic activity, though it remains unclear whether catabolic enzymes with specific pesticide activity would be stimulated in this way. These strategies that exploit our fundamental understanding of microbial community ecology could prove useful in developing bioremediation strategies that simultaneously remove complex mixtures of pesticides in water resources.

Conclusion

Bioremediation is a promising technology for remediation of pesticide-contaminated water resources. Traditional techniques such as bioaugmentation and biostimulation are expected to contribute to successful solutions, but application of these techniques must be preceded by

careful consideration of the unique challenges posed by pesticide contamination. Environments in which bioremediation is planned should be fully characterized in terms of the activity of the indigenous microbial community and the occurrence of other AOC substrates to enable performance predictions for a variety of proposed bioremediation options. Continued research should focus on improving our fundamental understanding of kinetic, physiological, and ecological processes occurring in low concentration environments. Advances in these areas are expected to lead to new approaches to effectively design and optimize bioremediation strategies for pesticide-contaminated water resources.

Acknowledgements

D.E. Helbling thanks Dr. Jens Aamand (GEUS), Dr. Benjamin Horemans (KU Leuven), and Dr. Hans-Peter Kohler (Eawag) for critically evaluating earlier versions of this manuscript.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Grube A, Donaldson D, Kiely T, Wu L: *Pesticides Industry Sales and Usage 2006 and 2007 Market Estimates*. U.S. Environmental Protection Agency; 2011.
2. Moschet C, Wittmer I, Simovic J, Junghans M, Piazzoli A, Singer H, Stamm C, Leu C, Hollender J: **How a complete pesticide screening changes the assessment of surface water quality.** *Environ Sci Technol* 2014, **48**:5423-5432.
3. Benner J, Helbling DE, Kohler H-PE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B et al.: **Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?** *Water Res* 2013, **47**:5955-5976.
4. World Health Organization: *Guidelines for Drinking-Water Quality*. edn 4. 2011.
5. The Council of the European Union: *Council Directive 98/83/EC of 3 November 1998 on the Quality of Water intended for Human Consumption*. Official Journal of the European Communities; 1998.
6. Australian Government: *National Health and Medical Research Council, Natural Resource Management Ministerial Council: Australian Drinking Water Guidelines 6, Version 3.0. National Water Quality Management Strategy*; 2014.
7. United States Environmental Protection Agency: *National Primary Drinking Water Regulations*. Safe Drinking Water Act; 2009.
8. United States Environmental Protection Agency: *Contaminant Candidate List (CCL)-3*. Safe Drinking Water Act; 2009.
9. Fenner K, Canonica S, Wackett LP, Elsner M: **Evaluating pesticide degradation in the environment: blind spots and emerging opportunities.** *Science* 2013, **341**:752-758.
10. Alexander M: **Environmental and microbiological problems arising from recalcitrant molecules.** *Microb Ecol* 1975, **2**:17-27.
11. Wackett L, Sadowsky M, Martinez B, Shapir N: **Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies.** *Appl Microbial Biotechnol* 2002, **58**:39-45.

12. Kolvenbach BA, Helbling DE, Kohler H-PE, Corvini PF: **Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria.** *Curr Opin Biotechnol* 2014, **27**:8-14.

13. Noor S, Changey F, Oakeshott JG, Scott C, Martin-Laurent F: **Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA.** *Biodegradation* 2014, **25**:21-30.

14. Koeck-Schulmeyer M, Villagrassa M, Lopez de Alda M, Cespedes-Sanchez R, Ventura F, Barcelo D: **Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact.** *Sci Total Environ* 2013, **458**:466-476.

15. Kern S, Baumgartner R, Helbling DE, Hollender J, Singer H, Loos MJ, Schwarzenbach RP, Fenner K: **A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment.** *J Environ Monit* 2010, **12**:2100-2111.

16. Tarao M, Seto M: **Estimation of the yield coefficient of *Pseudomonas* sp strain DP-4 with a low substrate (2,4-dichlorophenol [DCP]) concentration in a mineral medium from which uncharacterized organic compounds were eliminated by a non-DCP-degrading organism.** *Appl Environ Microbiol* 2000, **66**:566-570.

17. Egli T: **How to live at very low substrate concentration.** *Water Res* 2010, **44**:4826-4837.

18. Liu L, Helbling DE, Kohler H-PE, Smets BF: **A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes.** *Environ Sci Technol* 2014, **48**:13358-13366.

The authors developed a model framework to predict the extent of pesticide biodegradation under a range of environmental scenarios with particular focus on the co-occurrence of indigenous microbial communities and other AOC substrates. The model considered only the kinetics of these interactions and successfully predicted previously unexplained kinetic behavior.

19. Beggah S, van der Meer JR: *Protocol for Inferring Compound Biodegradation at Low Concentrations from Biomass Measurements.* Humana Press; 2014:: 1-9.

20. Helbling DE, Hammes F, Egli T, Kohler H-PE: **Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon.** *Appl Environ Microbiol* 2014, **80**:1306-1313.

The authors developed a novel method to measure microbial growth and substrate utilization in an experimental system that restricted the occurrence of contaminating assimilable organic carbon substrates. Under these conditions, the authors showed that substrate utilization kinetics measured at high concentrations could predict kinetics at low concentrations for two pesticide-degrader pairs.

21. Sorensen SR, Simonsen A, Aamand J: **Constitutive mineralization of low concentrations of the herbicide linuron by a *Variovorax* sp. strain.** *FEMS Microbiol Lett* 2009, **292**:291-296.

22. Simonsen A, Badawi N, Anskjaer GG, Albers CN, Sorensen SR, Sorensen J, Aamand J: **Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by *Aminobacter* spp.** *Appl Microbiol Biotechnol* 2012, **94**:237-245.

23. Horemans B, Hofkens J, Smolders E, Springael D: **Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter.** *FEMS Microbiol Ecol* 2014, **88**:184-194.

Biofilms were grown on environmentally relevant concentrations of a target pesticide and subsequently co-fed with other organic carbon substrates. Co-feeding with the pesticide and easily degradable organic carbon substrates increased biofilm biomass, but pesticide removal remained constant. These results point towards decreased specific activity of the pesticide degrader in the presence of other easily degradable carbon substrates.

24. Hoppe-Jones C, Dickenson ERV, Drewes JE: **The role of microbial adaptation and biodegradable dissolved organic carbon on the attenuation of trace organic chemicals during groundwater recharge.** *Sci Total Environ* 2012, **437**:137-144.

25. Li D, Alidina M, Drewes J: **Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems.** *Appl Microbiol Biotechnol* 2014, **98**:5747-5756.

26. Zearley TL, Summers RS: **Removal of trace organic micropollutants by drinking water biological filters.** *Environ Sci Technol* 2012, **46**:9412-9419.

27. McDowall B, Hoefel D, Newcombe G, Saint CP, Ho L: **Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria.** *Water Res* 2009, **43**:433-440.

28. Feakin S, Blackburn E, Burns R: **Inoculation of granular activated carbon in a fixed-bed with S-triazine-degrading bacteria as a water-treatment process.** *Water Res* 1995, **29**:819-825.

29. Jones L, Owen S, Horrell P, Burns R: **Bacterial inoculation of granular activated carbon filters for the removal of atrazine from surface water.** *Water Res* 1998, **32**:2542-2549.

30. Kong L, Zhu S, Zhu L, Xie H, Wei K, Yan T, Wang J, Wang J, Wang F, Sun F: **Colonization of *Alcaligenes faecalis* strain JBW4 in natural soils and its detoxification of endosulfan.** *Appl Microbiol Biotechnol* 2014, **98**:1407-1416.

31. Onneby K, Hakansson S, Pizzul L, Stenstrom J: **Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored *Sphingobium* sp.** *Biodegradation* 2014, **25**:291-300.

32. Sniegowski K, Bers K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D: **Minimal pesticide-primed soil inoculum density to secure maximum pesticide degradation efficiency in on-farm biopurification systems.** *Chemosphere* 2012, **88**:1114-1118.

33. Zhou G, Wang Y, Zhai S, Ge F, Liu Z, Dai Y, Yuan S, Hou J: **Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium *Ensifer adhaerens* strain TMX-23.** *Appl Microbiol Biotechnol* 2013, **97**:4065-4074.

34. Howell CC, Semple KT, Bending GD: **Isolation and characterisation of azoxystrobin degrading bacteria from soil.** *Chemosphere* 2014, **95**:370-378.

35. Mandal K, Singh B, Jariyal M, Gupta VK: **Bioremediation of fipronil by a *Bacillus firmus* isolate from soil.** *Chemosphere* 2014, **101**:55-60.

36. Goezdereliler E, Boon N, Aamand J, De Roy K, Granitsiotis MS, Albrechtsen H, Sorensen SR: **Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations.** *Appl Environ Microbiol* 2013, **79**:367-376.

The authors present a novel method to isolate potential degraders from oligotrophic environments under conditions that are similar to those in their native habitat. This method was applied in parallel to more traditional enrichment techniques conducted at high concentrations. The results showed that the community isolated in the environmentally relevant enrichment had greater activity towards environmentally relevant concentrations of the target pesticide.

37. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G: **Biodegradation of *Chlorpyrifos* and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain *Cladosporium cladosporioides* Hu-01.** *PLoS One* 2012, **7**:e47205.

38. Jain R, Garg V, Yadav D: **In vitro comparative analysis of monocrotophos degrading potential of *Aspergillus flavus*, *Fusarium pallidoroseum* and *Macrophomina* sp.** *Biodegradation* 2014, **25**:437-446.

39. Cocaign A, Bui L, Silar P, Tong LCH, Busi F, Lamouri A, Mougin C, Rodrigues-Lima F, Dupret J, Dairou J: **Biotransformation of *Trichoderma* spp. and their tolerance to aromatic amines, a major class of pollutants.** *Appl Environ Microbiol* 2013, **79**:4719-4726.

40. Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J: **Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).** *Environ Pollut* 2013, **181**:122-127.

41. Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S: **Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems.** *Sci Total Environ* 2014, **466**:699-705.

42. Sirotkina M, Efremenko EN: **Rhodococcus lactonase with organophosphate hydrolase (OPH) activity and His6-tagged OPH with lactonase activity: evolutionary proximity of the enzymes and new possibilities in their application.** *Appl Microbiol Biotechnol* 2014, **98**:2647-2656.

43. Zhang Y, An J, Ye W, Yang G, Qian Z, Chen H, Cui L, Feng Y: **Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides.** *Appl Environ Microbiol* 2012, **78**:6647-6655.

The authors employed a combination of site saturation mutagenesis and whole-gene error-prone PCR to induce mutations in a lactonase to improve specificity and activity towards organophosphate pesticides. Several improved variants were isolated, the most active variant accumulated eight amino acid substitutions and demonstrated a 232-fold improvement over the wild-type enzyme in organophosphate activity.

44. Seo J, Keum Y, Li QX: **Metabolomic and proteomic insights into carbaryl catabolism by *Burkholderia* sp C3 and degradation of ten N-methylcarbamates.** *Biodegradation* 2013, **24**:795-811.

45. Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A: **Simultaneous degradation of organophosphate and organochlorine pesticides by *Sphingobium japonicum* UT26 with surface-displayed organophosphorus hydrolase.** *Biodegradation* 2013, **24**:295-303.

46. Vital M, Hammes F, Egli T: **Competition of *Escherichia coli* O157 with a drinking water bacterial community at low nutrient concentrations.** *Water Res* 2012, **46**:6279-6290.

47. Van Nevel S, De Roy K, Boon N: **Bacterial invasion potential in water is determined by nutrient availability and the indigenous community.** *FEMS Microbiol Ecol* 2013, **85**:593-603.

48. De Roy K, Marzorati M, Negroni A, Thas O, Ballo A, Fava F, Verstraete W, Daffonchio D, Boon N: **Environmental conditions and community evenness determine the outcome of biological invasion.** *Nat Commun* 2013, **4**:1-5.

49. Mertens B, Boon N, Verstraete W: **Slow-release inoculation allows sustained biodegradation of gamma-hexachlorocyclohexane.** *Appl Environ Microbiol* 2006, **72**:622-627.

50. Partovinia A, Naeimpoor F: **Comparison of phenanthrene biodegradation by free and immobilized cell systems: formation of hydroxylated compounds.** *Environ Sci Pollut Res* 2014, **21**:5889-5898.

51. Bergero MF, Lucchesi GI: **Degradation of cationic surfactants using *Pseudomonas putida* A ATCC 12633 immobilized in calcium alginate beads.** *Biodegradation* 2013, **24**:353-364.

52. Rivelli V, Franzetti A, Gandolfi I, Cordoni S, Bestetti G: **Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils.** *Biodegradation* 2013, **24**:1-11.

53. Levi S, Hybel A-, Bjerg PL, Albrechtsen H-: **Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment.** *Sci Total Environ* 2014, **473**:667-675.

54. Johnson DR, Helbling DE, Lee TK, Park J, Fenner K, Kohler H-PE, Ackermann M: **Biodiversity associates with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities.** *Appl Environ Microbiol* 2015, **81**:666-675.

55. Cardinale BJ: **Biodiversity improves water quality through niche partitioning.** *Nature* 2011, **472**:86-91.

56. Ihssen J, Egli T: **Global physiological analysis of carbon- and energy-limited growing *Escherichia coli* confirms a high degree of catabolic flexibility and preparedness for mixed substrate utilization.** *Environ Microbiol* 2005, **7**:1568-1581.