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The use of pesticides in agricultural and urban environments
has improved quality of life around the world. However, the
resulting accumulation of pesticide residues in fresh water
resources has negative effects on aquatic ecosystem and
human health. Bioremediation has been proposed as an
environmentally sound alternative for the remediation of
pesticide-contaminated water resources, though full-scale
implementation has thus far been limited. One major challenge
that has impeded progress is the occurrence of pesticides at
low concentrations. Recent research has improved our
fundamental understanding of pesticide biodegradation
processes occurring at low concentrations under a variety of
environmental scenarios and is expected to contribute to the
development of applied bioremediation strategies for
pesticide-contaminated water resources.
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Introduction

Approximately 2.4 million metric tons of pesticide active
ingredients are applied annually worldwide to control the
occurrence of weeds, insects, fungi, and other unwanted
organisms in agricultural and urban environments [1].
Decades of monitoring studies have documented the
occurrence of pesticide residues at trace concentrations
(on the order of pg/LL and lower) in water resources
around the world (e.g. [2°]). One potential pathway of
human exposure to pesticides is through drinking water.
Even at trace concentrations, pesticides may exceed
regulated drinking water concentration thresholds [3]
and remediation may be required to protect public health
(see Box 1 for summary of key legislation and guidelines
for pesticide occurrence in drinking water). Traditional
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drinking water treatment processes do not effectively
remove pesticides from water [3]. Advanced water treat-
ment processes such as activated carbon target pesticides
for removal, but are expensive to operate and are not
suitable or feasible for all situations [3]. Therefore, alter-
native strategies are needed to effectively remove pesti-
cides from drinking water resources and limit human
exposure.

Engineered bioremediation processes have a long history
of application for environmental restoration, however
there are unique challenges to consider when designing
bioremediation strategies for pesticide-contaminated wa-
ter resources. Traditional bioremediation processes typi-
cally target specific chemical contaminants that are
confined in the subsurface at high concentrations. In
contrast, bioremediation of pesticide-contaminated water
resources must target soluble pesticide residues that are
transported in the aqueous phase at low concentrations.
Further, pesticides occur in water resources along with
other carbon substrates that are present at similar or
greater concentrations; pesticide degraders must compete
with indigenous microbial communities for these carbon
substrates while maintaining biodegradation activity to-
wards pesticides. In this review, the recent literature on
pesticide biodegradation and bioremediation is explored
while focusing on these unique challenges. First, the
kinetic and physiological factors that determine the ex-
tent of pesticide biodegradation under a variety of envi-
ronmental scenarios are considered. Then, the general
strategies that have been proposed for the bioremediation
of pesticide-contaminated water resources are intro-
duced. Finally, the main challenges limiting the applica-
tion of specific techniques are discussed.

Factors that determine the extent of pesticide
biodegradation

Biodegradation is regarded as the most important means
for natural attenuation of pesticides in the environment
[9]. However, pesticide biodegradation will only occur
under favorable environmental conditions [10]. One criti-
cal factor that determines the extent of pesticide biodeg-
radation is the interaction between the pesticide degrader
and the indigenous microbial community along with the
consequent competition for other assimilable organic
carbon (AOC) substrates. These interactions are pre-
sented schematically in Figure 1. There are two limiting
scenarios that can reduce the complexity of these inter-
actions. The first scenario is delineated on the left side of
Figure 1 and is characterized by relatively high growth
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Box 1 Summary of key legislation and guidelines for pesticide
occurrence in drinking water
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Figure 1

World Health Organization (WHO) Guidelines for Drinking Water

Quality [4]

— Establishes guideline values (GVs) for 32 individual pesticides that
are of health significance in drinking water.

— GVs range between 0.03 and 200 pg/L.

European Union (EU) Groundwater Directive [5]

— Stipulates maximum allowable concentration of all individual
pesticides in drinking water is 0.1 ng/L.

— Stipulates that the sum of all pesticide concentrations is less than
0.5 ng/L.

— Stipulates maximum allowable concentration of aldrin, dieldrin,
heptachlor, and heptachlor epoxide is 0.03 p.g/L.

Australian Drinking Water Guidelines 6 [6]
— Establishes guideline values (GVs) for 153 individual pesticides.
— GVs range between 0.0003 and 9 p.g/L.

United States Environmental Protection Agency (USEPA) Safe

Drinking Water Act

— Stipulates maximum contaminant levels (MCLs) for 21 individual
pesticides [7].

— Stipulates MCLs for the 21 pesticides in the range of 0.2-700 p.g/L.

— Identifies 43 additional pesticides and pesticide degradation
products on a contaminant candidate list (CCL) that may require
an MCL in future regulations [8].

rates of the pesticide degrader on the pesticide substrate.
"T'his can occur when pesticide concentrations are high or
when enzyme affinities for the target pesticide are greater
than enzyme affinities for other AOC substrates. For
example, agricultural soils are generally characterized
by high concentrations of pesticides following applica-
tion; under these conditions, significant biodegradation
and mineralization of pesticides has been reported (e.g.
[11]). Bacterial enzymes may also evolve in response to
prolonged exposure to high concentrations of specific
pesticides which can lead to the construction of novel
metabolic pathways [12] or enhanced metabolic activity
[13]. In this limiting scenario, interactions with the indig-
enous microbial community or other AOC substrates are
not expected to have a significant effect on pesticide
biodegradation. The second scenario is delineated on the
right side of Figure 1 and is characterized by relatively
high growth rates of either the pesticide degrader or the
indigenous microbial community on other AOC sub-
strates. This can occur when the concentration of AOC
substrates is high or enzyme affinities for the target
pesticide are relatively low. For example, wastewater
treatment plant influents are generally characterized by
high concentrations of other AOC substrates and low
concentrations of pesticides [14]. Under these limiting
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Schematic of interactions between pesticide degraders and
indigenous microbial communities along with the consequent
competition for other assimilable organic carbon (AOC) substrates.
Key parameters that determine the extent of pesticide biodegradation
are the growth rate and yield of the pesticide degrader on the
pesticide (ipap, Ypa,p): the growth rate and yield of the pesticide
degrader on other AOC substrates (upg,a0c: Ypa,a0c), and the growth
rate and yield of the indigenous microbial community on other AOC
substrates (ux aoc, Yxaoc)- The limiting scenarios described in the text
are delineated by the dashed lines. Schematic is adapted from Liu

et al. [18°].

conditions, the environment selects for microorganisms
that grow on the abundant AOC substrates and pesticides
are typically recalcitrant [14]. Pesticide removal reported
in these types of environments is generally attributed to
fortuitous metabolism [9] evidenced by the formation of
pesticide degradation products [15].

Pesticide-contaminated water resources are not generally
characterized by one of these limiting scenarios and
therefore the complement of interactions presented in
Figure 1 are important for determining the extent of
pesticide biodegradation. The co-occurrence of indige-
nous microbial communities and other AOC substrates
can have either positive or negative effects on the extent
of pesticide biodegradation [16,17]. A recent model de-
veloped and validated using literature reported biodegra-
dation data demonstrated that the effects of interactions
with indigenous microbial communities or other AOC
substrates can largely be predicted by considering the
kinetics of those interactions [18°]. The key parameters
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needed to make predictions on the extent of pesticide
biodegradation are the growth rates and yields of the
pesticide degraders and the indigenous microbial commu-
nity on the pesticide and other AOC substrates [18°].
These parameters are difficult to measure in biodegrada-
tion experiments conducted at environmentally relevant
concentrations. However, two methods based on high
accuracy cell counting and experimental procedures that
minimize interferences from external carbon were recently
developed [19,20°°]. Application of these methods has led
to robust estimates of growth rates and yields of pesticide
degraders in experiments conducted at low concentrations
[20°°]. Importantly, growth rates measured at relatively
high pesticide concentrations could predict growth rates
measured at low concentrations [20°°]. These new meth-
ods can be applied to estimate kinetic parameters for
growth on a variety of pesticide and AOC substrates. Fully
parameterized models can be used to simulate pesticide
biodegradation under a wide range of environmental sce-
narios and to optimize bioremediation processes [18°].

A variety of physiological processes are also important for
pesticide biodegradation at low concentrations. For exam-
ple, some pesticide degraders can mineralize target pesti-
cides at environmentally relevant concentrations by means
of a constitutively expressed catabolic pathway [21]. In
contrast, other pesticide degraders have one or more cata-
bolic genes in the pathway that require induction at higher
concentrations [22] which can lead to recalcitrance or the
accumulation of biodegradation intermediates. Catabolic
gene induction may also play a role in the phenomenon of
threshold concentrations which are often reported in the
range of 1-100 pwg/LL [17], though the specific causes of
threshold concentrations remain poorly understood. Car-
bon catabolite repression may also be an important physi-
ological process affecting pesticide biodegradation in
environments with varying types and amounts of other
AOC substrates. In low concentration environments,
mixed substrate utilization has been widely reported
(e.g. [17]). However, recent data showed that the specific
activity of a pesticide degrader was suppressed in the
presence of easily degradable AOC substrates at low con-
centrations [23°]. Other experiments likewise showed that
the extent of biodegradation of a variety of trace organic
contaminants (including pesticides) was suppressed as the
quantity of easily degradable AOC substrate supplements
was increased [24,25]. These data suggest that carbon
catabolite repression may be relevant under certain envi-
ronmental scenarios and an important consideration in
developing bioremediation strategies.

Bioremediation of pesticide-contaminated
water resources

Most bioremediation strategies considered for pesticide-
contaminated water resources involve biofiltration. There
are two main reasons for this. First, pesticides in water
resources are generally mobile. Biofiltration enables the

design of a confined bioremediation compartment
through which pesticide-contaminated water can flow.
Second, the hydrodynamics of some types of biofiltration
systems can be controlled in such a way that enables high
loading rates of pesticides and other carbon substrates
even when they are present at low concentrations. High
loading rates can have positive effects on biodegradation
by generating high fluxes of substrates that consequently
enhance metabolic activity, though high loading rates can
also limit hydraulic residence times which could have
negative effects on bioremediation. Some general biore-
mediation schemes for pesticide-contaminated water
resources related to drinking water production are pro-
vided in Figure 2. Natural attenuation of pesticides in
experimental biofiltration systems has been reported (e.g.
[26]), but biodegradation is most often incomplete result-
ing in either residual concentrations of pesticides or
pesticide degradation products in effluents. Therefore,
the aim of bioremediation is to optimize the rate and
extent of biodegradation by employing techniques such
as bioaugmentation and biostimulation.

Bioaugmentation in pesticide-contaminated
water resources

Bioaugmentation involves application of non-native degra-
ders to a contaminated environment or engineered process
to enhance the biodegradation of target chemical contami-
nants. Bioaugmentation has been explored at laboratory-
scale and pilot-scale to remove taste and odor compounds
[27] and triazine pesticides [28,29] during drinking water
production. More recently, bioaugmentation has been
successfully demonstrated for the remediation of soils
containing a variety of pesticides including endosulfan,
4-chloro-2-methylphenoxyacetic acid (MCPA), and
linuron [30-32]. There are two main challenges in devel-
oping bioaugmentation strategies for the targeted removal
of pesticides in water resources. First, suitable pesticide
degraders must be isolated with the requisite metabolic
capabilities and physiology to utilize the target pesticides
at low concentrations and under a range of environmental
scenarios. Second, the pesticide degrader must remain in
the bioremediation compartment and maintain activity
towards the target pesticide over extended time scales.

Pesticide degraders are generally isolated from environ-
mental samples following selective enrichment on rela-
tively high concentrations of the target pesticide [33-35].
However, it was recently demonstrated that the physiol-
ogy of the resulting degraders can be dependent on the
conditions at which they were enriched [36°°]. Specifical-
ly, microbial communities that could utilize MCPA were
enriched from groundwater on low and high concentrations
of MCPA [36°°]. The results showed that both communities
had biodegradation activity towards MCPA, but the com-
munity isolated at low MCPA concentrations had greater
activity towards low concentrations of MCPA as evidenced
by shorter lag phases [36°°]. Thus, a subpopulation of
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Figure 2
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General bioremediation schemes for pesticide-contaminated water resources at various locations within a water system. (a) Biofiltration is used as
part of managed bank filtration. A bioremediation zone is designed and optimized for remediation of pesticide-contaminated water prior to
reaching the intake at the drinking water treatment plant. (b) Biofiltration is applied directly at the intake to the drinking water treatment plant.
Here, pesticide-contaminated groundwater is treated prior to the traditional treatment train. (c) Biofiltration is applied in conjunction with traditional
filtration objectives within the drinking water treatment plant. In each example, bioaugmentation or biostimulation could be used to enhance

biodegradation of pesticides.

MCPA degraders was isolated that might be better suited
for bioaugmentation in water resources contaminated with
low concentrations of MCPA. Fungi are also recognized as
important pesticide degraders. Fungal degraders have re-
cently been isolated that can biodegrade organophosphate
pesticides [37,38] and pesticides containing aromatic amine
functional groups [39]. Mixed bacterial and fungal commu-
nities have also shown cooperative improvements to pesti-
cide biodegradation. For example, diuron and 2,6-
dichlorobenzamide (BAM) were mineralized more rapidly
in sand when bacterial and fungal degraders were simulta-
neously present than when the bacterial degraders were
present alone [40,41]. These observations were attributed
to cooperative metabolism or enhanced transport of bacte-
rial degraders by fungal hyphae [41].

In licu of selective enrichment for identifying novel pesti-
cide degraders, others have considered investigating the
metabolic capabilities of organisms that are known to
metabolize anthropogenic chemicals that have analogous
chemical structures to pesticides. For example, a pair of
bacteria that use lactonases to oxidize a variety of oil
constituents were recently shown to metabolize organo-
phosphate pesticides using the same enzymes [42]. Fur-
ther, laboratory techniques were used to enhance the
catalytic activity of lacotonases towards organophosphate
pesticides through induced mutations [43°]. The isolated
mutants lost their activity towards lactones, but showed
increased affinity towards a number of organophosphate
pesticides [43°]. In a separate example, a bacterium that
metabolizes polycyclic aromatic hydrocarbons was used to
metabolize the carbaryl group of N-methylcarbamate pes-
ticides [44]. Another emerging approach is to expand the
metabolic capacity of pesticide degraders. For example, a
genetically engineered microorganism capable of simulta-
neously degrading organophosphate and organochlorine

pesticides was constructed by display of organophosphate
hydrolase on the cell surface of a hexachlorocyclohexane
(HCH)-degrading bacterium [45]. The modified organism
showed simultaneous activity towards organophosphate
and organochlorine pesticides. In sum, these techniques
are expected to contribute to identifying pesticide degra-
ders for bioaugmentation, though it remains critical to
investigate degrader physiology at low concentrations
and in the presence of indigenous microbial communities
and other AOC substrates when targeting water resources
contaminated with low concentrations of pesticides.

Approaches to ensure successful invasion of a pesticide
degrader into an indigenous microbial community are limit-
ed. Recent work aimed at understanding the potential for
pathogen proliferation in drinking water systems revealed
that pathogens were outcompeted by native microbial com-
munities adapted to life in drinking water [46,47]. These
results reinforce the recommendation to isolate pesticide
degraders from environments and under conditions that are
similar to those in which the bioaugmentation will occur
[36°°]. Other studies have looked at ecological factors that
control bacterial invasion of microbial communities. For
example, it was demonstrated that microbial communities
with a high level of evenness are more resistant to invasion
due to greater niche overlap among the native taxa [48].
Therefore, an understanding of the community composition
into which bioaugmentation is planned is also expected to be
an essential prerequisite for understanding potential success.
If a successful invasion is unlikely or unexpected, an alter-
native approach could be to encapsulate or immobilize
pesticide degraders onto surfaces. This can protect cells
from predators, prevent washout, and consequently extend
the lifetime of biodegradation activity. For example, the
biodegradation capacity of a lindane degrader persisted
longer in liquid and slurry microcosms when encapsulated
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in open-ended tubes which resulted in a slow release of
active lindane degraders [49]. The duration of biodegrada-
tion activity was also extended following encapsulation of
degraders in polyvinyl alcohol cryogel beads [50], calcium
alginate beads [51], and other natural materials [52]. These
immobilization techniques are expected to significantly
enhance the vitality and lifespan of a bicaugmentation
system.

Biostimulation in pesticide-contaminated
water resources

Biostimulation is a bioremediation technique that
involves enhancement of microbial community activity
following manipulation of the physicochemical environ-
ment. This is most often accomplished by adding various
forms of potentially rate limiting substrates or nutrients to
the environment. For example, bentazone, mecoprop,
and dichlorprop biodegradation was stimulated in anaer-
obic aquifer material following the addition of oxygen
[53]. A new approach to biostimulation could be to
manipulate a microbial community to enhance biodegra-
dation activity towards a broader range of pesticides.
There are at least two ways that this could be achieved.
First, certain measures of biodiversity including taxonom-
ic richness have been shown to associate positively and
significantly with the collective biotransformation rates of
multiple trace organic pollutants in microbial communi-
ties [54]. Taxonomic richness was enhanced in laboratory-
scale experiments by providing niche opportunities for
microorganisms in the form of physical and chemical
heterogeneities [55]. Manipulating the taxonomic rich-
ness of microbial communities in engineered bioremedi-
ation processes by providing niche opportunities may
result in greater biodegradation activity towards a broader
range of pesticides. Second, microorganisms generally
express larger numbers of catabolic genes under oligo-
trophic conditions [56]. This physiological mechanism
allows bacteria to take advantage of a broad range of
scarce substrates in oligotrophic environments. Con-
structing biofiltration systems that treat contaminated
water in a series of compartments could lead to increas-
ingly oligotrophic bioremediation zones and microbial
communities with greater metabolic activity, though it
remains unclear whether catabolic enzymes with specific
pesticide activity would be stimulated in this way. These
strategies that exploit our fundamental understanding of
microbial community ecology could prove useful in de-
veloping bioremediation strategies that simultaneously
remove complex mixtures of pesticides in water
resources.

Conclusion

Bioremediation is a promising technology for remediation
of pesticide-contaminated water resources. Traditional
techniques such as bioaugmentation and biostimulation
are expected to contribute to successful solutions, but
application of these techniques must be preceded by

careful consideration of the unique challenges posed
by pesticide contamination. Environments in which bio-
remediation is planned should be fully characterized in
terms of the activity of the indigenous microbial commu-
nity and the occurrence of other AOC substrates to enable
performance predictions for a variety of proposed biore-
mediation options. Continued research should focus on
improving our fundamental understanding of kinetic,
physiological, and ecological processes occurring in low
concentration environments. Advances in these areas are
expected to lead to new approaches to effectively design
and optimize bioremediation strategies for pesticide-con-
taminated water resources.
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