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Statisticians may frequently get involved in carrying out spatial analysis of huge datasets. The irregularly spaced datasets are often very difficult to implement due to computational limitations. Sometimes even when normality is assumed, calculating the likelihood function involves 0(N^3) operations, where N is the number of observations. This is called the likelihood for Gaussian spatial process observed at n locations requiring 0(N^3) operations. However, if the said observations are on a regular complete lattice, it may be possible to compute the likelihood function with fewer calculations using spectral methods(.........................). The methods are based from the likelihood approximation as proposed by Whittle. 
Spectral methods for irregular time series have been studied in order to estimate the periodogram of a time series. In spatial datasets, the simple likelihood approxiamation by, Vecchia (1998), is based on partitioning the data into clusters and assuming that the clusters are conditionally independent. Vecchia's approximation method gives unbiased estimating equations.
The new method proposed, assume that the locations at which we have missing data are not random but instead are due to spatial design of the data. This is the case problem involving large spatial datasets with missing data. 
Examples of these scenarios includes; when working with monitoring air pollution data or meteorologic data from weather stations among other different cases.
			Spectral Domain
 A random field z in R2 is called weakly stationary if it has finite second moments, its mean function is constant, and it has an autocovariance function C, such that (x-y)=cov{Z(x),Z(y)}. 
If this autocovariance function satifies the intergral of R2[C(x) less the infinite, then we can describe the spectral density function , f, which is athe Fourier transform of the autocovariance function.

		Incomplete Lattice
This involves the spectral methods used to approximate the likelihood for spatila processes observed on incomplete lattices. 
We assume that an estimated spectral density for the process of interest on the incomplete lattice and study the asymptotic properties of the estimated spectrum and the potential impact of this on the likelihood approximation.
Suppose Z is a lattice process with a spectral density fz. We will assume that Z is a weakly staionary real-valued Gaussian process with mean 0 and finite moments. The process Z is defined on a rectangular PN={1,,,.......n1}*{1,..........n2} of sample size N=n1n2. The covariance c of the process Z satifies the following conditions;
	1. [a,1]∑x[1+││x│]│c(x)]<∞
Where c(x) is the cov[Z9x+y), Z(y)}, and [[x]] denotes the ℓ2 - norm of a vector x= ( x1,x2) on the two dimensional inteer lattice. 
We thus conclude that the spectral density of Z exists and has uniformly bounded derivates.
The Process Z is not observed directly but we observe Y, an amplitude-modulated version of Z.
y(x0=g(x/n)Z(x)
x/n is the function (x1/n1, x2/n2).
This function g meets the following conditions:
	a) g(u) is bounded in U; for any U in the two-dimensional integer lattice, it is of bounded variation and vanishes for u outside a bounded domain A. To understand the performance of our estimated likelihood function on an incomplete lattice, we must conduct several simulation studies.
		Likelihood for Irregularly spaced Data
We assume that Z is a countinuous Gaussian spatial process of interest, observed at M irregular locations. and function of z is the stationary spectral density of Z, we define a process Y at location X as the integral of Z in a block of area centered at x,
Y(x)= ∆-2∫h(x-s)Z(s)ds,
where for u=(u1,u2) we have 
h(u)= {1 or 0 otherwise, 
Y is also a stationary process with spectral density f(y).

Other functions are simulation study for irregular Datasets, comparisons with other likelihood approaches for continuous spatial processes.
In general, the spectral method for estimating the covariance parameters of a spatial process is likelihood-based and it offers enormous computational benefits. The Whittle approximated likelihood has been used on lattice data with missing values and irregularly spaced datasets. 
The spectral likelihood approach is simple and very efficient to compute. It is also fast compared with any other known likelihood approximation method for spatial data that gives consistent estimates.
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